WALII Publications
2024
Alston, J. J., Soranno, A., Holehouse, A. S. (2024) Conserved molecular recognition by an intrinsically disordered region in the absence of sequence conservation. Biophysical Journal. 123(3). https://doi.org/10.1016/j.bpj.2023.11.260
Ginzburg, D. N., Cox, J. A., Rhee, S. Y. (2024) Non‐destructive, whole‐plant phenotyping reveals dynamic changes in water use efficiency, photosynthesis, and rhizosphere acidification of sorghum accessions under osmotic stress. Plant Direct. 8(3). https://doi.org/10.1002/pld3.571
Biswas, S., Gollub, E., Yu, F., Ginell, G., Holehouse, A., Sukenik, S., Boothby, T.C. (2024) Helicity of a tardigrade disordered protein contributes to its protective function during desiccation. Protein Science. 33, 2. DOI: https://doi.org/10.1002/pro.4872
KC, S., Nguyen, K., Nicholson, V., Walgren, A., Trent, T., Gollub, E., Romero, S., Holehouse, A.S., Sukenik, S., Boothby, T.C. (2024) Disordered proteins interact with the chemical environment to tune their protective function during drying. bioRxiv. DOI: https://doi.org/10.1101/2024.02.28.582506
Kumara, U.G.V.S.S, Ramirez, J.F., Boothby, T.C. (2024) The effect of sucrose polymer-size on glass transition temperature, glass former fragility, and water retention during drying. Frontiers in Materials. 11. DOI: https://doi.org/10.3389/fmats.2024.1351671
Marks, R. A. (2024) Resurrection plants revisited: Bridging the gap between bryophytes and angiosperms to decode desiccation tolerance. New Phytologist. https://doi.org/10.1111/nph.19719
Marks, R. A., Delgado, P., Makonya, G. M., Cooper, K., VanBuren, R., Farrant, J. M., (2024) Higher order polyploids exhibit enhanced desiccation tolerance in the grass Microchloa caffra, Journal of Experimental Botany. https://doi.org/10.1093/jxb/erae126
Marks, R.A., Van Der Pas, L., Schuster, J. et al. (2024) Convergent evolution of desiccation tolerance in grasses. Nat. Plants. 10, 1112–1125. https://doi.org/10.1038/s41477-024-01729-5
Ramirez, J.F., Kumara, U.G.V.S.S, Arulsamy, N., Boothby, T.C. (2024) Water content, transition temperature and fragility influence protection and anhydrobiotic capacity. BBA Advances. DOI: https://doi.org/10.1016/j.bbadva.2024.100115
Sanchez‐Martinez, S., Nguyen, K., Biswas, S., Nicholson, V., Romanyuk, A. V., Ramirez, J., Kc, S., Akter, A., Childs, C., Meese, E. K., Usher, E. T., Ginell, G. M., Yu, F., Gollub, E., Malferrari, M., Francia, F., Venturoli, G., Martin, E. W., Caporaletti, F., Giubertoni, G., Woutersen, S., Sukenik, S., Woolfson, D. N., Holehouse, A. S., Boothby, T. C. (2024) Labile Assembly of a tardigrade protein induces biostasis. Protein Science. 33(4). https://doi.org/10.1002/pro.4941
Shorinola, O., Marks, R., Emmrich, P. et al. (2024) Integrative and inclusive genomics to promote the use of underutilised crops. Nat Commun. 15, 320. https://doi.org/10.1038/s41467-023-44535-x
VanBuren, R., Nguyen, A., Marks, R.A., Mercado, C., Pardo, A., Pardo, J., Schuster, J., St Aubin, B., Lipham Wilson, M., Rhee, S.Y. (2024) Variability in drought gene expression datasets highlight the need for community standardization. bioRxiv. DOI: 10.1101/2024.02.04.578814
Ginzburg, D. N., Cox, J. A., Rhee, S. Y. (2024) Non‐destructive, whole‐plant phenotyping reveals dynamic changes in water use efficiency, photosynthesis, and rhizosphere acidification of sorghum accessions under osmotic stress. Plant Direct. 8(3). https://doi.org/10.1002/pld3.571
Biswas, S., Gollub, E., Yu, F., Ginell, G., Holehouse, A., Sukenik, S., Boothby, T.C. (2024) Helicity of a tardigrade disordered protein contributes to its protective function during desiccation. Protein Science. 33, 2. DOI: https://doi.org/10.1002/pro.4872
KC, S., Nguyen, K., Nicholson, V., Walgren, A., Trent, T., Gollub, E., Romero, S., Holehouse, A.S., Sukenik, S., Boothby, T.C. (2024) Disordered proteins interact with the chemical environment to tune their protective function during drying. bioRxiv. DOI: https://doi.org/10.1101/2024.02.28.582506
Kumara, U.G.V.S.S, Ramirez, J.F., Boothby, T.C. (2024) The effect of sucrose polymer-size on glass transition temperature, glass former fragility, and water retention during drying. Frontiers in Materials. 11. DOI: https://doi.org/10.3389/fmats.2024.1351671
Marks, R. A. (2024) Resurrection plants revisited: Bridging the gap between bryophytes and angiosperms to decode desiccation tolerance. New Phytologist. https://doi.org/10.1111/nph.19719
Marks, R. A., Delgado, P., Makonya, G. M., Cooper, K., VanBuren, R., Farrant, J. M., (2024) Higher order polyploids exhibit enhanced desiccation tolerance in the grass Microchloa caffra, Journal of Experimental Botany. https://doi.org/10.1093/jxb/erae126
Marks, R.A., Van Der Pas, L., Schuster, J. et al. (2024) Convergent evolution of desiccation tolerance in grasses. Nat. Plants. 10, 1112–1125. https://doi.org/10.1038/s41477-024-01729-5
Ramirez, J.F., Kumara, U.G.V.S.S, Arulsamy, N., Boothby, T.C. (2024) Water content, transition temperature and fragility influence protection and anhydrobiotic capacity. BBA Advances. DOI: https://doi.org/10.1016/j.bbadva.2024.100115
Sanchez‐Martinez, S., Nguyen, K., Biswas, S., Nicholson, V., Romanyuk, A. V., Ramirez, J., Kc, S., Akter, A., Childs, C., Meese, E. K., Usher, E. T., Ginell, G. M., Yu, F., Gollub, E., Malferrari, M., Francia, F., Venturoli, G., Martin, E. W., Caporaletti, F., Giubertoni, G., Woutersen, S., Sukenik, S., Woolfson, D. N., Holehouse, A. S., Boothby, T. C. (2024) Labile Assembly of a tardigrade protein induces biostasis. Protein Science. 33(4). https://doi.org/10.1002/pro.4941
Shorinola, O., Marks, R., Emmrich, P. et al. (2024) Integrative and inclusive genomics to promote the use of underutilised crops. Nat Commun. 15, 320. https://doi.org/10.1038/s41467-023-44535-x
VanBuren, R., Nguyen, A., Marks, R.A., Mercado, C., Pardo, A., Pardo, J., Schuster, J., St Aubin, B., Lipham Wilson, M., Rhee, S.Y. (2024) Variability in drought gene expression datasets highlight the need for community standardization. bioRxiv. DOI: 10.1101/2024.02.04.578814
2023
Field, S., Jang, G.-J., Dean, C., Strader, L. C., Rhee, S. Y. (2023) Plants use molecular mechanisms mediated by biomolecular condensates to integrate environmental cues with development. The Plant Cell. 35(9), 3173–3186. https://doi.org/10.1093/plcell/koad062
Marks, R.A., Amézquita, E.J., Percival, S., Rougon-Cardoso, A., Chibici-Revneanu, C., Tebele, S.M., Farrant, J.M., Chitwood, D.H., VanBuren, R. (2023) A critical analysis of plant science literature reveals ongoing inequities. PNAS. 120, 10. DOI: https://doi.org/10.1073/pnas.2217564120
Packebush, M.H., Sanchez-Martinez, S., Biswas, S., KC, S., Nguyen, K., Ramirez, J.F., Nicholson, V., Boothby, T.C. (2023) Natural and engineered mediators of desiccation tolerance stabilize Human Blood Clotting Factor VIII in a dry state. Scientific Reports. 13, 4542. DOI: https://doi.org/10.1038/s41598-023-31586-9
Romero-Perez, P. S., Dorone, Y., Flores, E., Sukenik, S., Boeynaems, S. (2023) "When Phased without Water: Biophysics of Cellular Desiccation, from Biomolecules to Condensates. Chemical Reviews.123 (14), 9010-9035, DOI: 10.1021/acs.chemrev.2c00659
Sanchez-Martinez, S., Ramirez, J.F., Meese, E.K., Childs, C.A., Boothby, T.C. (2023) The tardigrade protein CAHS D interacts with, but does not retain, water in hydrated and desiccated systems. Scientific Reports. 13, 10449. DOI: 10.1038/s41598-023-37485-3
Marks, R.A., Amézquita, E.J., Percival, S., Rougon-Cardoso, A., Chibici-Revneanu, C., Tebele, S.M., Farrant, J.M., Chitwood, D.H., VanBuren, R. (2023) A critical analysis of plant science literature reveals ongoing inequities. PNAS. 120, 10. DOI: https://doi.org/10.1073/pnas.2217564120
Packebush, M.H., Sanchez-Martinez, S., Biswas, S., KC, S., Nguyen, K., Ramirez, J.F., Nicholson, V., Boothby, T.C. (2023) Natural and engineered mediators of desiccation tolerance stabilize Human Blood Clotting Factor VIII in a dry state. Scientific Reports. 13, 4542. DOI: https://doi.org/10.1038/s41598-023-31586-9
Romero-Perez, P. S., Dorone, Y., Flores, E., Sukenik, S., Boeynaems, S. (2023) "When Phased without Water: Biophysics of Cellular Desiccation, from Biomolecules to Condensates. Chemical Reviews.123 (14), 9010-9035, DOI: 10.1021/acs.chemrev.2c00659
Sanchez-Martinez, S., Ramirez, J.F., Meese, E.K., Childs, C.A., Boothby, T.C. (2023) The tardigrade protein CAHS D interacts with, but does not retain, water in hydrated and desiccated systems. Scientific Reports. 13, 10449. DOI: 10.1038/s41598-023-37485-3
2022
Chen, A., Tapia, H., Goddard, J. M., & Gibney, P. A. (2022) Trehalose and its applications in the food industry. Comprehensive Reviews in Food Science and Food Safety, 1–34. DOI: 10.1111/1541-4337.13048
Nguyen, K., KC, S., Gonzalez, T., Tapia, H., Boothby, T. C. (2022) Trehalose and tardigrade CAHS proteins work synergistically to promote desiccation tolerance. Commun. Biol 5, 1046. DOI: 10.1038/s42003-022-04015-2
Nguyen, K., KC, S., Gonzalez, T., Tapia, H., Boothby, T. C. (2022) Trehalose and tardigrade CAHS proteins work synergistically to promote desiccation tolerance. Commun. Biol 5, 1046. DOI: 10.1038/s42003-022-04015-2
2021
Boothby, T. C. (2021) Water content influences the vitrified properties of CAHS proteins. Mol. Cell 81, 411–413. PMID: 33545054
Dorone, Y., Boeynaems, S., Flores, E., Jin, B., Hateley, S., Bossi, F., Lazarus, E., Pennington, J. G., Michiels, E., De Decker, M., Vints, K., Baatsen, P., Bassel, G. W., Otegui, M. S., Holehouse, A. S., Exposito-Alonso, M., Sukenik, S., Gitler, A. D., Rhee, S. Y. (2021) A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. Cell 184. PMID: 34233164
Hesgrove, C. S., Nguyen, K. H., Biswas, S., Childs, C. A., Shraddha, K. C., Medina, B. X., Alvarado, V., Sukenik, S., Yu, F., Malferrari, M., Francia, F., Venturoli, G., Martin, E. W., Holehouse, A. S., Boothby, T. C. (2021) Tardigrade CAHS Proteins Act as Molecular Swiss Army Knives to Mediate Desiccation Tolerance Through Multiple Mechanisms. bioRxiv. DOI: 10.1101/2021.08.16.456555
Marks, R. A., Farrant, J. M., Nicholas McLetchie, D., VanBuren, R. (2021) Unexplored dimensions of variability in vegetative desiccation tolerance. Am. J. Bot. 108, 346–358. PMID: 33421106
Moses, D., Guadalupe, K., Yu, F., Flores, E., Perez, A., McAnelly, R., Shamoon, N. M., Cuevas-Zepeda, E., Merg, A., Martin, E. W., Holehouse, A. S., Sukenik, S. (2021) Hidden structure in disordered proteins is adaptive to intracellular changes. bioRxiv. DOI: 10.1101/2021.11.24.469609
Dorone, Y., Boeynaems, S., Flores, E., Jin, B., Hateley, S., Bossi, F., Lazarus, E., Pennington, J. G., Michiels, E., De Decker, M., Vints, K., Baatsen, P., Bassel, G. W., Otegui, M. S., Holehouse, A. S., Exposito-Alonso, M., Sukenik, S., Gitler, A. D., Rhee, S. Y. (2021) A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. Cell 184. PMID: 34233164
Hesgrove, C. S., Nguyen, K. H., Biswas, S., Childs, C. A., Shraddha, K. C., Medina, B. X., Alvarado, V., Sukenik, S., Yu, F., Malferrari, M., Francia, F., Venturoli, G., Martin, E. W., Holehouse, A. S., Boothby, T. C. (2021) Tardigrade CAHS Proteins Act as Molecular Swiss Army Knives to Mediate Desiccation Tolerance Through Multiple Mechanisms. bioRxiv. DOI: 10.1101/2021.08.16.456555
Marks, R. A., Farrant, J. M., Nicholas McLetchie, D., VanBuren, R. (2021) Unexplored dimensions of variability in vegetative desiccation tolerance. Am. J. Bot. 108, 346–358. PMID: 33421106
Moses, D., Guadalupe, K., Yu, F., Flores, E., Perez, A., McAnelly, R., Shamoon, N. M., Cuevas-Zepeda, E., Merg, A., Martin, E. W., Holehouse, A. S., Sukenik, S. (2021) Hidden structure in disordered proteins is adaptive to intracellular changes. bioRxiv. DOI: 10.1101/2021.11.24.469609
2020
Moses, D., Yu, F., Ginell, G. M., Shamoon, N. M., Koenig, P. S., Holehouse, A. S., Sukenik, S. (2020) Revealing the Hidden Sensitivity of Intrinsically Disordered Proteins to their Chemical Environment. J. Phys. Chem. Lett. 11, 10131–10136. PMID: 33191750
Pardo, J., Man Wai, C., Chay, H., Madden, C. F., Hilhorst, H. W. M., Farrant, J. M., VanBuren, R. (2020) Intertwined signatures of desiccation and drought tolerance in grasses. Proc. Natl. Acad. Sci. U. S. A. 117, 10079–10088. PMID: 32327609
Pardo, J., Man Wai, C., Chay, H., Madden, C. F., Hilhorst, H. W. M., Farrant, J. M., VanBuren, R. (2020) Intertwined signatures of desiccation and drought tolerance in grasses. Proc. Natl. Acad. Sci. U. S. A. 117, 10079–10088. PMID: 32327609
2017-2019
Boothby, T. C., Tapia, H., Brozena, A. H., Piszkiewicz, S., Smith, A. E., Giovannini, I., Rebecchi, L., Pielak, G. J., Koshland, D., Goldstein, B. (2017) Tardigrades Use Intrinsically Disordered Proteins to Survive Desiccation. Mol. Cell 65, 975–984.e5. PMID: 28306513
Exposito-Alonso, M., Vasseur, F., Ding, W., Wang, G., Burbano, H. A., Weigel, D. (2018) Genomic basis and evolutionary potential for extreme drought adaptation in Arabidopsis thaliana. Nat Ecol Evol 2, 352–358. PMID: 29255303
Fleming, M. B., Richards, C. M., Walters, C. (2017) Decline in RNA integrity of dry-stored soybean seeds correlates with loss of germination potential. J. Exp. Bot. 68, 2219–2230. PMID: 28407071
Koshland D. and Tapia, H. (2019) Desiccation tolerance: an unusual window into stress biology. MBoC 30, 737–741. PMID: 30870092
Exposito-Alonso, M., Vasseur, F., Ding, W., Wang, G., Burbano, H. A., Weigel, D. (2018) Genomic basis and evolutionary potential for extreme drought adaptation in Arabidopsis thaliana. Nat Ecol Evol 2, 352–358. PMID: 29255303
Fleming, M. B., Richards, C. M., Walters, C. (2017) Decline in RNA integrity of dry-stored soybean seeds correlates with loss of germination potential. J. Exp. Bot. 68, 2219–2230. PMID: 28407071
Koshland D. and Tapia, H. (2019) Desiccation tolerance: an unusual window into stress biology. MBoC 30, 737–741. PMID: 30870092